	Mai	cn tn	е апоу	's with	its co	mposition.
	(a)	Durrion				Tin-Lead
	(b)	Tern	eplate		2.	Silicon – Iron
	(c)	Ferr	ite		3.	Zinc-copper
	(d)	Bras	SS		4.	Chromium – ferrous
		(a)	(b)		(d)	
	(A)		1			
				4		
	, ,	1		3		
	(D)	4	2	3	1	
	(E)	Ans	swer n	ot knov	wn	
2	The to,	situ	ation o	of loose	e joint	under varying load may be susceptible
	(A)	Ma	rine co	rrosion	ı	(B) Stress corrosion cracking
	(C)	Gal	lvanic	corrosi	on	(D) Fretting corrosion
	(E)	Ans	swer n	ot knov	wn	
3.	Har	dena	ble sta	inless	steels	usually contains ———— carbon
	(A)	0.6°				(B) 0.9%
	(C)	1.2°				(D) 1.5%
	(E)			ot knov	wn	(D) 1.070
4.	Bra	ss is	an allo	y of co	pper a	and
	(A)	Tin	L			(B) Zinc
	(~ 1)	т	_			(T)\ NT: 1 1
	(C)	Lea	ıd			(D) Nickel

- 5. Silica bricks are never used for
 - (A) Open-hearth furnaces
 - (B) Coke ovens
 - (C) Gas retorts
 - (D) Furnaces subjected to extreme conditions
 - (E) Answer not known
- 6. The material used in the storage of ammonia is
 - (A) Mild steel

- (B) Stainless steel 316
- (C) Stainless steel 304
- (D) Carbon steel
- (E) Answer not known
- 7. Paddle agitator
 - (A) Produces radial flow
 - (B) Produces axial flow
 - (C) Moves at a speed less than critical speed
 - (D) Move at a speed greater than critical speed
 - (E) Answer not known

8.	Cho	ose t	he suit	able m	ixers	for	respective solids used
	(a)	Kne	ading r	nachin	es	1.	Uniform coating of solid particles with a small liquid
	(b)	Pony	y mixei	rs.		2.	Mix deformable or plastic solids
	(c)	Mul	ler mix	ers		3.	Mix Rubber and plastic solids, Masticate crude rubber
	(d)	Ban	bury m	ixers		4.	Blend viscous liquid or light pastes
		(a)	(b)	(c)	(d)		
	(A)			4			
	(B)	2	3	1	4		
	(C)	4	3	2	1		
	(D)	2	4	1	3		
	(E)	Ans	swer n	ot knov	vn		
9.	und nun	ler fu nber)	ılly de , if the	velope impel	d tur ler di	bule ame	stant for a stirred vessel operating ent flow conditions (constant power eter is increased by 20%, the impeller factor of
	(A)	(1.2)	$(2)^{\frac{3}{2}}$				(B) $(1.2)^{\frac{3}{5}}$
		(1.2	$\frac{2}{2}$				$\frac{5}{2}$
	(C)	(1.2)	$(2)^3$				(D) $(1.2)^{\frac{5}{3}}$
	(E)	Ans	swer n	ot knov	vn		
10.	_					_	ore disappears at a distance from the
	(A)	3.4					(B) 4.3
	(C)	4.7					(D) 7.4
	(E)			ot knov	vn		` '
	()	,	_ ,, <u></u> 11,				

5

- Filter medium resistance is important during the of 11. filtration
 - (A) Early stages

(B) Final stages

Entire process (C)

- (D) Decreased time
- (E) Answer not known
- Specific cake resistance of compressible sludge 12.
 - (A) Increases with pressure drop
 - (B) Decreases with pressure drop
 - (C) Unchanged with pressure drop
 - (D) Decreases and increases with pressure drop
 - Answer not known (E)
- A filter aid is added to the slurry before filtration to 13.
 - (A) Decrease the porosity of the cake
 - (B) Decrease the compressibility of the cake
 - (C) Increase the compressibility of the cake
 - (D) Increase the porosity of the cake
 - Answer not known (E)
- 14. Sphericity for a non–spherical particle is given by
 - (A) $6 Dp \frac{Sp}{Vp}$

(B) $\frac{6}{Dp} \frac{Vp}{Sp}$ (D) $\frac{Dp}{6} \frac{Vp}{Sp}$

(C) $\frac{6}{Dp} \frac{Sp}{Vp}$

- (E) Answer not known

15 .	What is the	standard	screen	used to	o measure	the	particle	size?
-------------	-------------	----------	--------	---------	-----------	-----	----------	-------

(A) 35 - 45 mm

(B) 68 - 88 mm

(C) $38 \mu m - 76 \text{ mm}$

- (D) 88 110 mm
- (E) Answer not known
- 16. The specific surface area of a particle for the whole bed is given by
 ————— (if the particles are non–spherical)

Whereas, $\phi = Sphericity$

 ε = Bed porosity

 D_{sp} = Dia of the particle

(A) $\frac{6}{\phi D_{sp}}$

(B) $\frac{6\phi}{D_{sp}}$

(C) $6(1-\varepsilon)/\phi$

- (D) $6(1-\varepsilon)/\phi D_{sp}$
- (E) Answer not known
- 17. The collection efficiency of cyclone separators increases with
 - (1) Decreasing particle size
 - (2) Increasing particle density
 - (3) Decreasing gas velocity
 - (4) Increasing gas temperature

Which of the following statements are correct?

(A) Only (1)

(B) (1) and (2) only

(C) (2) only

- (D) (3) and (4) only
- (E) Answer not known

- 18. A ballmill is used for grinding a powder from $50 \,\mu m$ to $10 \,\mu m$. If the diameter of ball mill is 100mm, The diameter of the ball is 10 mm, and operating speed is 50% of the critical speed, calculate the operating speed in RPM.
 - (A) 69.46 RPM

(B) 60.46 RPM

(C) 70.46 RPM

- (D) 79.46 RPM
- (E) Answer not known
- 19. The value of drag co-efficient (C_D) remains almost constant at a value of 0.1, for the Reynold's Number (Nee) in the range of
 - (A) $N_{\text{Re}} > 2 \times 10^5$

(B) $500 > N_{\text{Re}} < 2 \times 10^5$

(C) $0.2 < N_{\text{Re}} < 500$

- (D) $10^{-4} < N_{\text{Re}} \ 0.2$
- (E) Answer not known
- 20. Match the following terms with correct unit
 - (a) Rm-Medium Resistance
- 1. **Dimensionless**
- (b) α -specific cake resistance
- m^{-1} 2.

Screen opening

m3. kg

(d) Shape factor

4. mm

- - (a) (b) (c) (d)
- (A) 3 2 1 4
- 3 (B) 4 1
- (C) 2 1 4 3
- 3 2 (D) 4 1
- (E) Answer not known

- 21. The type of heat exchanger has the same space is occupied by the hot and cold gases, between which heat is exchanged known as
 - (A) Shell and tube heat exchanger
 - (B) Regenerator
 - (C) Direct contact heat exchanger
 - (D) Indirect contact heat exchanger
 - (E) Answer not known
- 22. For a given inlet and outlet temperatures of the hot and cold fluids, the Logarithmic mean temperature difference (LMTD) is
 - (A) Greater for parallel flow heat exchanger than counter current flow exchangers
 - (B) Greater for counter current flow heat exchangers than parallel flow
 - (C) Same for both parallel and counter current heat exchangers
 - (D) Depends on the properties of fluid
 - (E) Answer not known
- 23. Economy of evaporator is
 - (A) Number of kilograms of water vaporised per hour
 - (B) Number of kilograms of steam fed per hour
 - (C) Kilogram of steam fed per No.of kilograms vaporised
 - (D) Number of kilograms vaporised per kilogram of steam fed
 - (E) Answer not known

- 24. Economy of multiple effect evaporator is not influenced by
 - (A) Boiling point elevation
 - (B) Temperature of feed
 - (C) Ratio of weight of thin liquor to thick liquor
 - (D) Ratio of heat transfer
 - (E) Answer not known
- 25. The Net Transfer Unit is (NTU)
 - (A) U.C_{min}/A
 - (B) UA / C_{min}
 - (C) A.C_{min}
 - (D) U/A.C_{min}
 - (E) Answer not known
- 26. Choose the correct statement or statements
 - (i) The shape factor of small enclosed body with respect to the enclosing surface is zero
 - (ii) The shape factor of small enclosed body with respect to the enclosing surface is unity
 - (iii) A small opening form a large enclosure at constant temperature will provide black body radiation
 - (iv) Black paint is an example of Block body
 - (A) (i) only
 - (B) (i) and (iii) only
 - (C) (i) and (ii) only
 - (D) (ii) and (iii) only
 - (E) Answer not known

27.	Reynolds analogy expresses the relationship between heat transfer for laminar flow on a flat plate and												
	(A)	Velocity											
	(B)	Fluid friction											
	(C)	Viscosity											
	(D)	Density											
	(E)	Answer not known											
28.	The	prandtl number for gases is											
	(A)	100	(B) 1										
	(C)	50	(D) 200										
	(E)	Answer not known											
29.	The	Reciprocal of resistance is											
	(A)	Viscosity											
	(B)	Heat transfer coefficient											
	(C)	Thermal conductivity											
	(D)	Conductance											
	(E)	Answer not known											
30.		ch loss is relatively high in ellers?	centrifugal	pump	having	open							
	(A)	Mechanical losses	(B) Leakage losses										
	(C)	Recirculation losses	(D) Hydraulic losses										
	(E)	Answer not known											

- 31. In centrifugal pumps
 - (A) Discharge is not Even, it is pulsating
 - (B) Are belt driven
 - (C) Needs priming
 - (D) Develop high pressure
 - (E) Answer not known
- 32. Which of the following options represent the compression ratio range for blowers?
 - (A) Compression ratio above 7
 - (B) Compression ratio above 6 and below 8
 - (C) Compression ratio below 3 or 4
 - (D) Compression ratio above 10
 - (E) Answer not known
- 33. The operating range of fluidization velocities for all particle sizes are
 - (A) Greater with larger particles
 - (B) Much greater with small particles
 - (C) Almost the same
 - (D) Greater with small particles
 - (E) Answer not known

- The factors on which the rate of drying depends 34.
 - (1) Gas velocity and Humidity of gas
 - **(2)** Dry bulb temperature
 - (3) Dew point
 - **(4)** Area of drying surface and temperature
 - (A) (1) and (4)
 - (B) (2) and (3)
 - (C) (3) and (4)
 - (1) and (2) (D)
 - (E) Answer not known
- 35. Choose the major loss of energy in pipes from the options given
 - (A) Frictional loss
 - Shock loss (B)
 - Entry loss (C)
 - Exit loss (D)
 - (E) Answer not known
- 36. For laminar flow through a packed bed the pressure drop is proportional to;
 - $\left(V_{s} \text{ is superficial liquid velocity and } D_{p} \text{ is the particle diameter} \right)$

(C) $\frac{{V_s}^2}{D_p}$

- (B) $\frac{{V_s}^2}{{D_p}^2}$ (D) $\frac{{V_s}^2}{{D_p}^3}$
- (E) Answer not known

- 37. An example of thixotropic fluid is
 - (A) Starch in water

- (B) Corn flour solution
- (C) Gypsum suspension
- (D) Some paints
- (E) Answer not known
- 38. Shear rate thinning fluids are known as
 - (A) Newtonian

(B) Pseudo plastic

(C) Bingham plastic

- (D) Dilatant
- (E) Answer not known
- 39. The type of reservoir used in single column manometer is
 - (A) Small
 - (B) Large
 - (C) Extremely small
 - (D) Size is Irrelevant
 - (E) Answer not known
- 40. For laminar flow of incompressible fluid in closed conduit of radius 'R' maximum shear stress occurs at
 - (A) A distance equal to $\frac{R}{4}$ from the wall
 - (B) The centre
 - (C) A distance equal to $\frac{R}{2}$ from the wall
 - (D) The wall
 - (E) Answer not known

- 41. Removal of the solids present in the catalyst is called as
 - (A) Regeneration

(B) Reactivation

(C) Poisoning

- (D) Displacement
- (E) Answer not known
- 42. Which of the following is true for fluidized catalytic beds?
 - (A) Batch reactor category
 - (B) No pressure drop
 - (C) Bulk density is a function of the flow rate through the bed
 - (D) Cannot be used for multi-phase chemical reactions
 - (E) Answer not known
- 43. The reaction 2A+B→2C occurs on a catalytic surface the reactant A and B diffuse to the catalyst surface and get converted completely. To the product C, which diffuses back. The steady state molar fluxes of A,B and C are related by

(A)
$$N_A = 2N_B = N_C$$

(B)
$$N_A = -\left(\frac{1}{2}\right)N_B = -N_C$$

(C)
$$N_A = 2N_A = -N_C$$

(D)
$$N_A = \left(\frac{1}{2}\right)N_B = N_C$$

- (E) Answer not known
- 44. The Knudsen diffusivity is dependent on
 - (A) The molecular velocity only
 - (B) The pore radius of the catalyst only
 - (C) The molecular mean free path only
 - (D) The molecular velocity and pore radius of the catalyst
 - (E) Answer not known

- 45. A phase tracer is introduced in an ideal CSTR (with a mean residence time τ) at time = 0. The time taken for the exit concentration of the tracer to reach half of its initial value will be
 - (A) 2τ
 - (B) 0.5τ
 - (C) $\tau/0.693$
 - (D) 0.693τ
 - (E) Answer not known
- 46. The operation of a Rotameter is based on
 - (A) Variable area flow meter
 - (B) Variable head flow meter
 - (C) Pressure drop across a nozzle
 - (D) Pressure at a stagnation point
 - (E) Answer not known
- 47. The instrument which uses semiconductor devices for temperature measurement are
 - (A) Thermistors
 - (B) Bimetallic thermometers
 - (C) Mercury thermometers
 - (D) Gas filled thermometers
 - (E) Answer not known

- 48. The non-adiabatic fixed bed reactors, radial mixing was supposed to be sufficiently good that all the resistance to energy transfer could be concentrated at the
 - (A) Reactor wall
 - (B) Baffles
 - (C) Agitator
 - (D) Feed concentration
 - (E) Answer not known
- 49. For the liquid phase zero—order reaction X→Y, the conversion of X in a CSTR is found to be 0.2 at a space velocity of 0.1 min⁻¹. What will be the conversion for a PFR with a space velocity of 0.2 min⁻¹? Assume that all the other operating conditions are the same for CSTR and PFR.
 - (A) 0.10
 - (B) 0.15
 - (C) 0.20
 - (D) 0.25
 - (E) Answer not known
- 50. The elements of fluid can cross the vessel boundary more than one time is called as ———— boundary condition.
 - (A) Open vessel
 - (B) Closed vessel
 - (C) Exit stream
 - (D) Entrance stream
 - (E) Answer not known

- 51. The single time fixed amount inlet for finding the E curve is called
 - (A) Pulse input

(B) Step input

(C) Trace input

- (D) Continuous input
- (E) Answer not known
- 52. For a second order liquid phase reaction 50% of 'A' converted in 10 min. The time taken for 75% conversion is
 - (A) 10 min

(B) 20 min

(C) 30 min

- (D) 40 min
- (E) Answer not known
- 53. The unsteady state material balance equation for the first order reaction carried out in a CSTR is ————.

where 'Q' is the volumetric flow rate, ' C_{AO} ' and ' C_{A} ' are inlet and outlet concentration, in the reactor, 'K'-rate constant and 'V' is the volume of the reactor

(A)
$$V \frac{dC_A}{dt} = QC_{Ao} + QC_A + KC_{AV}$$

(B)
$$V \frac{dC_A}{dt} = QC_{Ao} - QC_A - KC_{AV}$$

(C)
$$V \frac{dC_A}{dt} = QC_{Ao} - QC_A$$

(D)
$$QC_{Ao} - QC_A = KC_{AV}$$

(E) Answer not known

- 54. From the Arrhenius law, the value of the frequency factor (K_0) does not affect
 - (A) Concentration
 - (B) Pressure
 - (C) Temperature
 - (D) Flow rate
 - (E) Answer not known
- 55. The time required to process one reactor volume of feed measured at specified condition is known as
 - (A) Space velocity
 - (B) Space time
 - (C) Volumetric feed rate
 - (D) Mass flow rate
 - (E) Answer not known
- 56. The units of frequency factor in Arrhenius equation is
 - (A) Same as those of the rate constant
 - (B) Depend on the order of the reaction
 - (C) Depend on temper, pressure of the reaction
 - (D) Are cycles per unit times
 - (E) Answer not known

- 57. Which among the following is used to study the kinetics of surface catalyzed reactions for enzyme?
 - (A) Michaelis Menton
 - (B) Levenspiel Model
 - (C) Ottengraf Model
 - (D) Logistic Model
 - (E) Answer not known
- 58. Which of the following statement is/are correct?
 - Statement 1: Reactions with high activation energies are very high temperature sensitive.
 - Statement 2: Reactions with low activation energies are relatively temperature insensitive
 - (A) Statement 1 only correct
 - (B) Statement 1 and 2 correct
 - (C) Statement 2 only correct
 - (D) Both Statement are incorrect
 - (E) Answer not known
- 59. The unit for rate of reaction is usually
 - (A) Moles per liter per second
 - (B) Moles per second per liter
 - (C) Moles per second
 - (D) Moles per liter
 - (E) Answer not known

- 60. The rate constant of a zero order reaction is 0.2 mol/lit. hr. What will be the initial concentration of the reactant if, after half an hour, its concentration is 0.05 mol/lit?
 - (A) 0.115 moles / litre
 - (B) 0.15 sec^{-1}
 - (C) 0.15 moles/litre
 - (D) 0.0115 moles
 - (E) Answer not known
- 61. The Integrating factor of the equation

$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
 is

- (A) $-\frac{1}{e}$
- (B) $\frac{1}{e}$
- (C) $\frac{1}{x+1}$
- (D) $\log(x+1)$
- (E) Answer not known

- 62. The Hermitian matrix of A is: where, $A = \begin{bmatrix} 2 & 3+4i \\ 3-4i & -5 \end{bmatrix}$ A' =
 - (A) $\begin{bmatrix} 0 & 3+4i \\ 3-4i & 0 \end{bmatrix}$
 - (B) $\begin{bmatrix} 1 & 3+4i \\ 3-4i & 1 \end{bmatrix}$
 - (C) $\begin{bmatrix} 2 & 3-4i \\ 3+4i & -5 \end{bmatrix}$
 - (D) None of the above
 - (E) Answer not known
- 63. Form the differential equation of simple Harmonic Motion given by $x = A \cos(nt + \alpha)$ where x and t are variables and A and α are constants.
 - (A) $\frac{dx}{dt} = Ax$
 - (B) $\frac{d^2x}{dt^2} = nx$
 - $(C) \quad \frac{d^2x}{dt^2} + n^2x = 0$
 - (D) $\frac{d^2x}{dt^2} + nx = 0$
 - (E) Answer not known

64. Find the order and degree of the differential equation

$$\frac{d^2y}{dx^2} = f(x) \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{3/2}$$

- (A) Order 2 degree 3
- (B) Order 1 degree 2
- (C) Order 3 degree 2
- (D) Order 2 degree 2
- (E) Answer not known

65.
$$\frac{d^2x}{dx^2} + a^2x = 0 - (1)$$

$$X = 0$$
 at $x = 0$

$$X=0$$
 at $x=2R$

The solution of (1) which satisfies the conditions X=0 at x=0 is in the form; X=C sin ax and the condition x=0 at x=2R requires $c\sin aR=0$; $a_n=\frac{n\pi}{2R}$ where $n\neq 0$; the values of a,a_n are called;

- (A) Eigen functions
- (B) Eigen values
- (C) Fourier values
- (D) Finite values
- (E) Answer not known

- 66. The product of Eigen values of a matrix is the equal to its
 - (A) Rank
 - (B) Determinant
 - (C) Trace
 - (D) Transpose
 - (E) Answer not known
- 67. Eliminate a and b from $Z = axe^y + \frac{1}{2}a^2e^{2y} + b$

and find the partial differential equation

(A)
$$\frac{\partial z}{\partial x} = xe^y + \frac{1}{2}e^{2y}$$

(B)
$$\frac{\partial z}{\partial y} = x \left(\frac{\partial z}{\partial x} \right) + \left(\frac{\partial z}{\partial x} \right)^2$$

(C)
$$\frac{\partial z}{\partial x} = x \left(\frac{\partial z}{\partial y} \right) + \left(\frac{\partial z}{\partial y} \right)^2$$

(D)
$$\frac{\partial z}{\partial y} = xe^y + \frac{1}{2}e^y$$

(E) Answer not known

- 68. The Lagrange's auxiliary equations for the partial differential equation $P_p + Q_q = R$ is [Choose the best answer].
 - (A) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$
 - (B) $\frac{dx}{P} = \frac{dy}{Q}$
 - (C) $\frac{dx}{P} = \frac{dz}{R}$
 - (D) $\frac{dP}{x} = \frac{dQ}{y} = \frac{dR}{z}$
 - (E) Answer not known
- 69. Find the value of K for which the system of equations.

$$(3k-8)x+3y+3z=0$$

$$3x + (3k - 8)y + 3z = 0$$

$$3x + 3y + (3k - 8)z = 0$$

Has a Non-Trivial solution

- (A) $\frac{2}{3}, \frac{11}{3}, \frac{11}{3}$
- (B) $\frac{2}{3}, \frac{2}{3}, \frac{11}{3}$
- (C) $\frac{11}{3}, \frac{11}{3}, \frac{11}{3}$
- (D) $\frac{2}{3}, \frac{2}{3}, \frac{2}{3}$
- (E) Answer not known

- 70. Match the following methods with their respective order of convergence.
 - (a) Newton Bisection
- 1. 1

(b) Secant

- 2. 1.62
- (c) Newton Raphson
- 3. 2
- (a) (b) (c)
- (A) 1 2 3
- (B) 2 3 1
- (C) 3 2 1
- (D) 3 1 2
- (E) Answer not known
- 71. The roots of the equation $x^3 4x 10 = 0$ lies between
 - (A) 0 and 1
 - (B) 2 and 3
 - (C) 3 and 4
 - (D) 1 and 2
 - (E) Answer not known

72. The truncation error of the Trapezoidal Rule [for Single Application] is

(A)
$$E_t = -\frac{1}{12} f''(\xi) (b-a)^3$$

(B)
$$E_t = -\frac{1}{12} f''(\xi) (a-b)^3$$

(C)
$$E_t = \frac{1}{12} f''(\xi) (a-b)^3$$

(D)
$$E_t = \frac{1}{12} f''(\xi) (b-a)^3$$

- (E) Answer not known
- 73. Using the Trapezoidal Rule and 4 equal intervals (*n*=4), the calculated value of the integral (Rounded to the first decimal place)

$$\int_{0}^{\pi} \sin\theta \, d\theta \text{ is}$$

- (A) 1.7
- (B) 1.9
- (C) 2.0
- (D) 2.1
- (E) Answer not known
- 74. Process in which the basic process variables vary with both time and space, is called as
 - (A) Lumped parameter models
 - (B) Distributed parameter models
 - (C) Steady state models
 - (D) Neural Network model
 - (E) Answer not known

- 75. The positive root of $x^3 + 1 = 4x$ by regular falsi method is
 - (A) 1.1211
 - (B) 0.7391
 - (C) 2.1821
 - (D) 3.123
 - (E) Answer not known
- 76. The process of finding an equation of best fit is known as
 - (A) Transformation of equation
 - (B) Eigen value
 - (C) Curve fitting
 - (D) Orthogonalization
 - (E) Answer not known
- 77. Linear equation in one variable is written as
 - (A) Ax + B = 0
 - (B) $A + Bx^2 = 0$
 - (C) AB=0
 - (D) $Ax + Bx^2 = 0$, where *A* and *B* are coefficients
 - (E) Answer not known

78. The system

$$x-3y=4$$

$$-2x+6y=5$$

has following type of solution

- (A) The system has exactly one solution
- (B) No solution
- (C) Infinite number solutions
- (D) Cannot say
- (E) Answer not known
- 79. Identify the linear equation from the following

(A)
$$5x + 3y - 8xy = 16$$

(B)
$$x + \pi y + ez = \log 5$$

(C)
$$3x^2 + 2x + 1 = 0$$

(D)
$$\log y = 5x + 2$$

- (E) Answer not known
- 80. Find the Y-Intercept of the line 3x-4y+10=0

(A)
$$-4$$

(C)
$$10$$

(E) Answer not known

The	The pH range of Acid Rain									
(A)	5 to 6 pH									
(B)	4 to 4.9 pH									
(C)	5.5 to 6.5 pH									
(D)	4.5 to 5.5 pH									
(E)	Answer not known									
MIC	Methyl Isocyanate Burst with									
(A)	Methyl									
(B)	Water									
(C)	Alcohol									
(D)	Cyanate									
(E)	Answer not known									
one	———— states that the value beliefs and attitudes differ from society to another.									
(A)	Ethical relativism									
(B)	Descriptive Relativism									
(C)	Rational Relativism									
(D)	Contextualism									
(E)	Answer not known									
	(A) (B) (C) (D) (E) MIC (A) (B) (C) (D) (E) one (A) (B) (C) (D) (D)									

- 84. Match the following
 - (a) Copyright
 - (b) Trade-Secret
 - (c) Layout designs
 - (d) Trade mark

- 1. Formula
- 2. Integrated Circuits
- 3. Loger
- 4. Books
- (a) (b) (c) (d)
- (A) 2 3 4 1
- (B) 3 2 1 4
- (C) 1 3 2 4
- (D) 2 3 1 4
- (E) Answer not known
- 85. Name the correct relativism given below
 - (A) Honest
 - (B) Descriptive
 - (C) Morality
 - (D) Difficult
 - (E) Answer not known
- 86. The positive right means
 - (A) Basic Right
 - (B) Specific Right
 - (C) Right of Refusal
 - (D) Right to Recognition
 - (E) Answer not known

87.	_	Professional rights of employees are not justified by the following theory.												
	(A)	Dut	y theo	ry										
	(B)	`	nts the	•										
	(C)	Utilitarian theory												
	(D)	·												
	(E)													
88.	Mathematical version of scenario analysis is													
	(A)	Fau	lt tree	analy	sis									
	(B)	Eve	nt tree	analy	vsis									
	(C)	·												
	(D)	•												
	(E)	Answer not known												
89.	Mat	tch the	e follov	ving										
	(a)			_	r off lagoon	1.	High probability consequence risk	low						
	(b)	Swimming in a beach infested with jelly fish					Voluntary risk							
	(c)	Infor	med co	nsent		3.	Occupational risk							
	(d)	Asthi mill	na in a	a cotto	on spinning	4.	High probability high consequence risk							
		(a)	(b)	(c)	(d)									
	(A)	$\stackrel{\cdot}{2}$	3	4	1									
	(B)	2	3	1	4									
	(C)	3	2	4	1									
	(D)	3	2	1	4									
	(E)	Ans	wer no	t knov	wn									

	(a)	Kohlberg					1. Duty and Gift					
	(b)	Gilligan				2.	2. Adapt accepted rights					
	(c)	Post Conventional					The philosophy of mora development					
	(d)	Con	ventior	nal		4.	In a different voice					
		(a)	(b)	(c)	(d)							
	(A)	3	2	1	4							
	(B)	1	3	2	4							
	(C)	4	3	1	2							
	(D)	3	4	2	1							
	(E)	Ans	swer n	ot knov	wn							
91.		Which one of the following star professional roles?					true? V	Vith reference	to m	odels of		
	(i)	Social servants follows the concept of professionalism as independence										
	(ii)	Bureaucratic servants follows the concept of professionalism as employees										
	(iii)	Guardians follow the concept of professionalism as employees										
	(A)	(i) (only									
	(B)	(i) a	and (ii)	only								
	(C)	(ii)	only									
	(D)	(ii)	and (ii	i) only								
	(E)		swer n	-								
	\ _/		· ·									

Match the following with reference to moral development

90.

- 92. Engineers being a responsible social experimenter specifies
 - (A) Safety Point of View
 - (B) Technical competence point of view
 - (C) Company point of view
 - (D) Development point of view
 - (E) Answer not known
- 93. Gilligan theory based on moral development is mainly based on
 - (A) desire to please others
 - (B) logic and rule based
 - (C) Caring nature
 - (D) Factual and Justice
 - (E) Answer not known
- 94. Types of ethical dilama compared to profit versus welfare
 - (A) Technology ethics
 - (B) Administrative ethics
 - (C) Business ethics
 - (D) Environmental ethics
 - (E) Answer not known

- 95. In Kohlberg's theory conventional level is defined in which
 - (A) Norms of one's family group or society are accepted as final standard of morality
 - (B) Norms of Individual are accepted as final standard of morality
 - (C) Norms of group of people accepted as final standard of morality
 - (D) None of above
 - (E) Answer not known
- 96. Ethical values are associated with
 - (A) Social system
 - (B) Rule making
 - (C) Compassionate living
 - (D) Devotional living
 - (E) Answer not known
- 97. Which is not one of the three types of inquiry?
 - (A) Normative
 - (B) Conceptual
 - (C) Factual
 - (D) Informal
 - (E) Answer not known

- 98. Match the following:
 - (a) Personal ethics
 - (b) Professional ethics
 - (c) Micro ethics
 - (d) Macro ethics
 - (a) (b) (c) (d)
 - (A) 3 4 1 2
 - (B) 4 3 2 1
 - (C) 4 3 1 2
 - (D) 3 4 2 1
 - (E) Answer not known
- 99. Integrity comes under
 - (A) Public Spirited virtue
 - (B) Self-direction virtue
 - (C) Team work virtue
 - (D) Proficiency virtue
 - (E) Answer not known
- 100. The Enquiry that seek to identify and justify the morally desirable norms and standards that guide individuals or groups in taking decisions.
 - (A) Conceptual enquiry
 - (B) Normative enquiry
 - (C) Factorial enquiry
 - (D) Descriptive enquiry
 - (E) Answer not known

- 1. Grafting or Corruption
- 2. Factory of Safety
- 3. Organisational level
- 4. Day to day life

- 101. Modern theoretical developments in molecular thermodynamics of liquid solution behaviour is based on the concept of
 - (A) Local composition
 - (B) Local pressure
 - (C) Local temperature
 - (D) Local pressure, temperature and composition
 - (E) Answer not known
- 102. The effect of temperature on equilibrium constant is given by
 - (A) $\frac{d \ln k}{dT} = \frac{\Delta H^{\circ}}{RT^2}$

(B) $\frac{d \ln k}{dT} = \frac{\Delta H^{\circ}}{RT}$

(C) $\frac{d\ln k}{dT} = \frac{-\Delta H}{RT^2}$

- (D) $\frac{d\ln k}{dT} = \frac{-\Delta H^{\circ}}{RT}$
- (E) Answer not known
- 103. As pressure approaches zero, the ratio of fugacity to pressure (f/p) for a gas approaches
 - (A) Zero

(B) Unity

(C) Infinity

- (D) An indeterminate value
- (E) Answer not known
- 104. The entropy of a perfect crystal of every element or compound is zero at
 - (A) 0°C

(B) 273°C

(C) 100° C

- (D) -273° C
- (E) Answer not known

105.	. When mach number, $M > 1$ the flaw is			
	(A)	Incompressible		
	(B)	Sonic		
	(C)	Sub sonic		
	(D)	Supersonic		
	(E)	Answer not known		
106.		-	ty coefficient is divided into two n and interaction contributions	
	(A)	UNIFAC model	(B) NRTL model	
	(C)	Vanlaar model	(D) Wilson model	
	(E)	Answer not known		
107.	Whic	ch of the following are intensive	property?	
	(A)	Entropy		
	(B)	Heat capacity		
	(C)	Surface tension and chemical	potential	
	(D)	Free energy		
	(E)	Answer not known		
108.	The	value of Joule Thomson coeffici	ent at inversion point is	
	(A)	0	(B) 1	
	(C)	Infinity	(D) Negative	
	(E)	Answer not known	(D) Negative	
	(12)	THIS WELLHOU KHOWH		

- 109. Energy can neither be created nor can be destroyed. This is called
 - (A) Zeroth law of thermodynamics
 - (B) First law of thermodynamics
 - (C) Second law of thermodynamics
 - (D) Third law of thermodynamics
 - (E) Answer not known
- 110. In certain systems the degree of freedom is negative, which indicates that system is,
 - (A) Over defined

(B) Defined

(C) Not defined

- (D) Confined
- (E) Answer not known
- 111. Vapor phase hydration of $C_2 H_4$ to ethanol by the following reaction : $C_2 H_{2(g)} + H_2 O_{(g)} \leftrightarrow C_2 H_5 OH_{(g)}$

Attains equilibrium at 400 k and 3 bar. The standard Gibb's free energy change of reaction at these condition is $\Delta g^{\circ} = 4000 \, \text{J/mol}$. For 2 moles of an equimolar feed of ethylene and steam, the equation in term of the extent of reaction ε (in mole) at equilibrium is

(A)
$$\frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^2} - 0.3 = 0$$

(B)
$$\frac{(1-\varepsilon)^2}{\varepsilon(2-\varepsilon)} - 0.9 = 0$$

(C)
$$\frac{\varepsilon}{(1-\varepsilon)^2}$$
 - 0.3=0

(D)
$$\frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^2} - 0.9 = 0$$

(E) Answer not known

112.		a single component, two pendent variables are	phase mixture, the number of								
	(A) 4 (B) 0										
	(C)	1	(D) 2								
	(E)	Answer not known									
113.	kg/s.	In a process, the feed streams flow at a rate of 300 kg/s and 600 kg/s. The output flow rate is 500 Kg/s. The mass stored in the process for ten seconds is									
	(A)	400 kg	(B) 800 kg								
	(C)	4000 kg	(D) 2000 kg								
	(E)	Answer not known									
114.	conta 25%	In a textile mill, an evaporator system concentrates weak liquor containing 4% (by mass) caustic soda to produce a dye containing 25% solids (by mass). The amount of water evaporated per 100 kg of feed is									
	(A)	100 kg	(B) 75 kg								
	(C)	84 kg	(D) 24 kg								
	(E)	Answer not known									
115.		kg of wet solids are to be dries of water removed in kg is	ed from 60% to 20% moisture. The								
	(A)	570	(B) 200								
	(C)	400	(D) 500								
	(E)	Answer not known									

116.		many kilograms of grams atom carbon?	carbon d	lisulphide	will	contain	3.5			
	(A)	126 kilograms	(B)	128 kilog	rams					
	(C)									
	(E)	Answer not known								
117.	A heat engine operates between a heat source at 700 k and a heat sink at 300 K. What is the maximum efficiency of the engine?									
	(A)	0.43	(B)	0.51						
	(C)	0.57	(D)	0.47						
	(E)	Answer not known								
118.	What is the unit of specific gravity?									
	(A)	Kg/m ³	(B) m^3/Kg							
	(C)	$ m m/s^2$	(D) No unit							
	(E)	Answer not known								
119.	Absolute pressure is									
	(A)	Atmospheric Pressure -	⊦ Gauge Pı	ressure						
	(B)	Atmospheric Pressure -	- Vacuum	Pressure						
	(C)	Atmospheric Pressure -	- Gauge Pi	ressure						
	(D)	Vacuum Pressure + Gauge Pressure								
	(E)	Answer not known								

120. The volume of a mixture of two organic liquids 1 and 2 is given by

 $V=110-17x_1-2.5x_1^2$. where V is the volume. x_1 and x_2 are the mole fractions. The expression for partial molar volume of liquid 2 is (\overline{V}_2)

- (A) $110-17x_1-2.5x_1^2$
- (B) $-17x_1 2.5x_1$

(C) $110+2.5x_1^2$

- (D) $-34+5x_1$
- (E) Answer not known

121. The enthalpy of formation $\Delta H_f, H_2 O$ for the reaction in a fuel cell is

- (A) $\Delta H = -242 \text{ kJ/mol}$
- (B) $\Delta H = +242 \text{ kJ/mol}$
- (C) $\Delta H = +4200 \text{ kJ/mol}$
- (D) $\Delta H = -4200 \text{ kJ/mol}$
- (E) Answer not known

122. Match the process in Group I with the catalyst in Group II:

Group I

Group II

- (a) Fischer. Tropsch synthesis
- 1. Nickel
- (b) Formaldehyde from methanol
- 2. $\operatorname{Fe}_2 \operatorname{O}_3$
- (c) Hydrogenation of vegetable oil
- 3. Silver
- (d) Dehydrogenation of ethyl benzene
- 4. Cobalt

- (a) (b) (c) (d)
- (A) 3 4 1 2
- (B) 4 2 1 3
- (C) 4 3 1 2
- (D) 3 4 2 1
- (E) Answer not known

123.	3. Identify the organic substances qualified as heat of fusion materials							
	(A)	Fatty acids	(B)	Bagasse				
	(C)	Rock Substances	(D)	Anematics				
	(E)	Answer not known						
124.	The	wind speed is measured using						
	(A)	Pyranometer	(B)	Manometer				
	(C)	Anemometer	(D)	Wind vane				
	(E)	Answer not known						
125.	5. The presence of sodium sulphate in pulp							
	(A) Makes the Pulp bleachability easier							
	(B) Poor strength properties of paper							
	(C)	Make the pulp bleaching poor						
	(D)	To recover the organic content	-					
	(E)	Answer not known						
126.	Sodi	um silicate is added in deterger	nts to	0				
	(A)	Increase foam	(B)	Enhance dirt suspension				
	(C)	Avoid corrosion	(D)	Increase brightness				
	(E)	Answer not known						
127.	Rano	cidity of the fatty oil can be redu	uced	by its				
	(A)	Hydrogenation	(B)	Purification				
	(C)	Oxidation	(D)	Decoloration				
	(E)	Answer not known						

128.	Match	the	foll	owing	:
------	-------	-----	------	-------	---

Gas

Composition

(a) Synthesis gas

1. CH_4 , ethane

(b) Coke oven gas

2. Propane, butane

(c) Natural gas

- 3. CH_4 , H_2
- (d) Liquified Petroleum Gas (LPG)
- 4. CO, H₂

- (a) (b) (c)
- (A) 3
- 1
- 4
- (B) 4
- 3
- 1

(d)

2

2

4

2

- (C) 1
- 2
- 3
- (D) 4
- 1
- 3
- (E) Answer not known
- 129. The spent looking liquor, is commonly called as
 - (A) White liquor

(B) Green liquor

(C) Black liquor

- (D) Digestion liquor
- (E) Answer not known
- 130. Identify the polymer which is formed due to condensation polymerization.
 - (A) High-density polyethylene
 - (B) Low-density polyethylene
 - (C) Polypropylene
 - (D) Polyester resin
 - (E) Answer not known

131.	Mot	tch th	o follo	wing d	riige t	_{with}	thoir	field of applications :			
101.	(a) Ether USP							Antianxiety			
	(b)							Anesthesia and solvent			
	(c)							Antiulcer			
	(d)		etidine				4.	Analgestic and Antipyretic			
		(a)	(b)	(c)	(d)						
	(A)	2	1	4	3						
	(B)	2	1	3	4						
	(C)		2								
	(D)	3	1	4	2						
	(E)	Ans	wer no	ot knov	vn						
132.	Sty	Styrene butadiene rubber (SBR) is									
	(A)	Natural rubber						(B) An engineering plastics			
	(C)	A s	ynthet	ic rubk	oer			(D) A synthetic manomer			
	(E)	•									
133	Cho	ogo t	he corr	eact an	tion :						
100.		-		-		1.	Pho	osphate Rock			
	(b)		4 (PO ₄	9	_	2.	ST'				
	(c)		$P_3 O_{10}$	_		3.	Sal	t Cake			
	(d)	Na_2	SO_4			4.	Tri	ple superphosphate			
		(a)	(b)	(c)	(d)						
	(A)	4	3	2	1						
	(B)	1	4	2	3						
	(C)	2	3	1	4						
	(D)	3	1	4	2						

(E) Answer not known

1	34.	Choose	the	best	answer	•
	-	CIIOOSC	ULIC	\mathcal{L}	α_{11}	

- (a) Slaked lime
- 1. Calcium oxide
- (b) Quick lime
- 2. Sodium carbonate decahydrate
- (c) Gypsum
- 3. Calcium hydroxide
- (d) Washing soda
- 4. Calcium sulfate dihydrate
- (a) (b) (c)
- (A) 4
- 3
- 2

(d)

1

3

4

2

- (B) 1
- 4
- 2
- (C) 2
- 3
- 1
- (D) 3
- 1
- 4
- (E) Answer not known
- 135. The enzymes used to convert molasses to ethyl alcohol are
 - (A) Lactase and invertase
 - (B) Invertase and zymase
 - (C) Amylase and zymase
 - (D) Protease and invertase
 - (E) Answer not known

136. Pick the correct catalyst from Group II for the process in Gro							rocess in Group I :		
		Group							Group II
	(a)	Hydr	odesul	furization			1.		Zeolites
	(b)	Fluid	cataly	tic cracki	ng		2.		Pt/Al ₂ O ₃
	(c)	Naph	tha R	eforming			3.		Co -mo/ Al_2O_3
		(a)	(b)	(c)					
	(A)	2	1	3					
	(B)	3	2	1					
	(C)	3	1	2					
	(D)	1	3	2					
	(E)	Ansv	wer no	t known					
137.	7. The main raw material for the production of cement								
	(A)	(A) Limestone			((B)	Coal		
	(C)	Gypsum			((D)	Sulph	nu	ric acid
	(E)	Ans	wer no	ot known					
100	mı	. 1						a	
138.	The	three	majoi	componer	nts are nece	ess	ary in	te	rtılızers
	(1)	Nitr	rogen						
	(2)	Pho	sphoru	ıs					
	(3)	Acet	tylene						
	(4)	Pota	assium	l					
	(A)	(1),	(2) and	d (3)					
	(B)	(1),	(3) and	d (4)					
	(C)	(1),	(2) and	d (4)					
	(D)		(3) and						
	(E)			ot known					

139.	The preferred reaction system for oxidation of O-xylene to phthalicanhydride											
	(A)) Jacketed liquid phase CSTR										
	(B) Jacketed steam heated multi tubular reactor											
	(C)	(C) Multi tubular reactor with cooling										
	(D)											
	(E)											
140.	Nitrogenous fertilizer is graded based in its											
	(A)	N_2O_4 content		(B) N	${\bf I}_2$ content							
	(C)	HNO_3 content		(D) N	IO_2 content	- J						
	(E)	Answer not known										
141.	The density of supercritical water											
	(A) Decreases with increase in temperature											
	(B)	Increases with decrease in pressure										
	(C)	Decreases with inc	rease in p	ressure								
	(D)	Increases with incr	rease in te	mperati	are							
	(E)	· · ·										
142.		an Ion exchange enerated by using	process,	cation	exchange	resin	bed	is				
	(A)	Acid solution		(B) Base solution								
	(C)	Buffer solution		(D) S	alt solution	-						
	(E)	E) Answer not known										

	are c	alled as								
	(A)	Anion exchanger	(B)	Cation exchanger						
	(C)	Acidic exchanger	(D)	Basic exchanger						
	(E)	Answer not known								
144.	Iden	tify the correct pair of property	-uni	t from the following						
	(A)	(A) Specific conductivity – ohm cm ⁻¹								
	(B) Equivalent conductivity – ohm ⁻¹ cm ² . eq ⁻¹									
	(C) Molar conductivity – ohm ⁻¹ cm. mole ²									
	(D)	$Cell\ constant-ohm^{-1}\ cm^{-1}$								
	(E)	Answer not known								
- 1 P	mı.		o							
145.	The	he ultra filtration retains particles of								
	(A)	Micron – submicron size								
	(B)	Macro size								
	(C)	Micron size								
	(D)	Sub micron size								
	(E)	Answer not known								
146.		——— is an example of hydro	ohili	c membrane.						
	(A)	Polyethylene	-							
	(B)	Poly propylene								
	(C)	Polytetra fluoroethylene								
	(D)	Nylon								
	(E)	Answer not known								

143. Ion exchangers with fixed negative charges can bind mobile cations

- 147. In gas-liquid chromatography, the mass of solvent phase per unit volume (W) equals the
 - (A) Bed density \times fraction solvent loading
 - (B) Bed density / Fraction solvent loading
 - (C) Bed density Fraction solvent loading
 - (D) Bed Density + Fraction solvent loading
 - (E) Answer not known
- 148. The driving force in dialysis process is
 - (A) Pressure difference
 - (B) Concentration difference
 - (C) Temperature difference
 - (D) Fugacity difference
 - (E) Answer not known
- 149. Separation process in which one or more components of a liquid mixture diffusing through a selective membrane evaporate under low pressure is
 - (A) Membrane separation
- (B) Reverse osmosis

(C) Crystallization

- (D) Pervaporation
- (E) Answer not known
- 150. The membrane skin thickness and average poresize can be varied by changing the
 - (A) Casting conditions (or) post casting treatment
 - (B) Cross flow filtration
 - (C) Selective skin support
 - (D) Counter flow filtration
 - (E) Answer not known

151. Distillation column is fed with $F\frac{mol}{h}$ of concentration x_F and delivers D mol/h of overhead product of concentration x_D and B mol/h of bottom product of concentration x_B . The flow of vapor with in the column is related as

(A)
$$\frac{D}{F} = \frac{x_F - x_B}{x_D - x_B}$$

(B)
$$\frac{D}{F} = \frac{x_D - x_B}{x_F - x_B}$$

(C)
$$\frac{D}{F} = \frac{x_D - x_F}{1 - x_B}$$

(D)
$$\frac{D}{F} = \frac{1 - x_B}{x_D - x_F}$$

- (E) Answer not known
- 152. The chief disadvantages of supercritical fluid extraction is the
 - (A) High pressure required
 - (B) Temperature required
 - (C) Fluid concentration
 - (D) Selection of solvent
 - (E) Answer not known
- 153. The moisture contained by the substance which exerts an equilibrium vapor pressure less than that of pure liquid at the same temperature
 - (A) Bound moisture
 - (B) Unbound moisture
 - (C) Free moisture
 - (D) Equilibrium moisture
 - (E) Answer not known

154.	Fractional solvent extraction									
	(A)	Employs only one solvent	(B) Employs double-solvent							
	(C)	Results in low recovery	(D) Employs no solvent							
	(E)	Answer not known								
155.	Flooding in a packed bed absorption column results due to									
	(A)	High pressure drop	(B) Low pressure drop							
	(C)	Low velocity of liquid	(D) High temperature							
	(E)	Answer not known								
156.	Schmidt number is the ratio of									
	(A)	(A) Momentum diffusivity								
		Thermal diffusivity								
	(B)									
	(C)									
	(D)									
		Momentum diffusivity								
	(E)	Answer not known								
157.		mass transfer to an Isolated oach zero, the Sherwood numb	sphere as the Reynolds number er approach a lower limit of							
	(A)	0	(B) 0.61							
	(C)	1	(D) 2							
	(E)	Answer not known								

158. Milk is pasteurized if it is heated to 336 k for 30 min. But if it is heated to 347 k it only needs 15 sec for the same result. Find the activation energy?

Activation energy and rate constant $(K_1 \text{ and } K_2)$ of chemical reaction at two different temperatures $(T_1 \text{ and } T_2)$ are related by

(A)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

(B)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R}\left(\frac{1}{T_2} + \frac{1}{T_1}\right)$$

(C)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E}{R}\left(\frac{1}{T_1} + \frac{1}{T_2}\right)$$

(D)
$$\ln\left(\frac{k_2}{k_1}\right) = \frac{-E}{R}\left(\frac{1}{T_1}, \frac{1}{T_2}\right)$$

- (E) Answer not known
- 159. The rate of reaction $A \rightarrow B$ doubles as the concentration of A, C_A is doubled. If the rate of reaction is proportional to C_A^n , then what is the value of n for this reaction?
 - (A) 0.5

(B) 2

(C) 1

- (D) 0
- (E) Answer not known
- 160. The flux J, relative to
 - (A) Characteristic nature of the constituent
 - (B) Application to design of equipments
 - (C) Diffusivity of the constituent
 - (D) Distance travelled by the constituent
 - (E) Answer not known

- 161. Choose the correct answer The purpose of feed forward control is to
 - (A) Eliminate the need for feed back control in a process
 - (B) Reduce the effect of load variation on the process variable
 - (C) Save energy
 - (D) Compensate for dead time and lag time in a process
 - (E) Answer not known
- 162. Typical control system design specifications for the gain and phase margins are
 - (A) $< 1.7 \text{ and } > 30^{\circ}$

(B) $> 1.7 \text{ and } < 30^{\circ}$

(C) $> 1.7 \text{ and } > 30^{\circ}$

- (D) $< 1.7 \text{ and } < 30^{\circ}$
- (E) Answer not known
- 163. The transfer function of the given proportional-Derivative controller is $G(s)=K_c(1+0.2)$ Find its corner frequency (W_c)
 - (A) $W_c = 4$

(B) $W_c = 1$

(C) $W_c = 5$

- (D) $W_c = 1.5$
- (E) Answer not known
- 164. The transfer function of a PID controller is
 - (A) $K_c \left(1 + \tau_I S + \tau_D S\right)$
- (B) $K_c \left(1 + \frac{1}{\tau_I S} + \tau_D S \right)$
- (C) $K_c \left(1 + \tau_I S + \frac{1}{\tau_D S}\right)$
- (D) $K_c \left(1 + \frac{1}{\tau_I S}\right)$
- (E) Answer not known

165.	For	riven characteristic equation $s^4 + 2s^2 + 5s^2 + 4s + 2 = 0$. The						
	system is							
	(A)	Stable						
	(B)	Instable						
	(C)	nitially stable then unstable						

- (D) Initially unstable then stable
- (E) Answer not known

166. The system with a transfer function of
$$\frac{4}{s^2+2s+4}$$
 is

- (A) Over damped system(B) Critically system(C) Under damped system(D) Undamped system
- (E) Answer not known
- 167. The time required to achieve the fractional response of 0.5 of a first order system to a step change in input is
 - (A) $\tau \ln 10$ (B) $\tau \ln 5$
 - (C) $\tau \ln 4$ (D) $\tau \ln 2$
 - (E) Answer not known
- 168. The open loop transfer function of a control system is $K_R/(1+\tau s)$, this represents
 - (A) A first order system
 - (B) Dead time system
 - (C) A first order time lag
 - (D) A second order system
 - (E) Answer not known

169.			is the ture of					strument	for	measuring	the	
	(A)	Bin	nettali	c thern	nomete	er						
	(B)											
	(C)	·										
	(D)	,										
	(E)											
	, ,											
170.	Match the process variables with the list of devices given below:											
			ess var					Measuring devices				
	(p)	Temperature 1.						Bourdon tube element				
	(q)	Pressure 2.						Orifice plates				
	(r)	Flow 3.					Infrared	analy	yzer			
	(s)	Liquid level 4.					Displace	r devi	ices			
	(t)	Composition				;	5.	Pyromete	er			
		(p)	(q)	(r)	(s)	(t)						
	(A)	5	1	2	4	3						
	(B)	3	1	4	2	5						
	(C)	1	3	4	2	5						
	(D)	3	1	2	4	5						
	(E)	Ans	swer no	ot knov	vn							
171.	A control configuration is the informavailable measurement to the availa								cture	e, used to con	nect	
	(A)	Ma	nipula	ted var	riable			(B) Distur	banc	e		
	(C)		asured					(D) Unme				
	(E)		swer n	-				. ,		1		

172.	Find the eigen values of $2A^2$ if $A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$ without finding A^2 ?							
	(A)	5, 1	(B)	25, 1				
	(C)	50, 2	. ,) 100, 2				
	(E)	Answer not known						
173.	Find the classification of $F_x - f_{yy} = 0$?							
	(A)	Elliptic		(B) Parabolic				
	(C)	Hyperbolic	(D)) Linear				
	(E)	Answer not known						
174.	Gauss seidal method is also termed as ——— method							
	(A)	Iterations	(B)	False positions				
	(C)	Successive displacement	(D)) Eliminations				
	(E)	Answer not known						
175.	Thermistor is a							
	(A)	Semi conductor whose resistance decreases with increase in temperature						
	(B)	Metal whose resistance increases linearly with temperature						
	(C)	Metal whose resistance does not vary with temperature						
	(D)	Device for measuring nuclear radiation						
	(E)	Answer not known						

- 176. ———— is a plot of overall variation of heat supply and demand across the entire process, which are zero at the pinch
 - (A) Grid diagram

- (B) Hot composite curve
- (C) Cold composite curve
- (D) Grand composite curve
- (E) Answer not known
- 177. The order of convergence of Newton's Raphson method
 - (A) 2

(B) 3

(C) 4

- (D) 5
- (E) Answer not known
- 178. The mathematical model equation, for a liquid level in a conical vessel is given by $\frac{dx}{dt} = -Kx^{-1.5} + \alpha u x^{-2}; \alpha = \frac{3.14 R^2}{H}$
 - $K\!=\!0.117$ (value coefficient) assume $\alpha\!=\!0.785$ R and H are the known dimensions of conical tank
 - (A) A 1% increase in u causes 2% change in x
 - (B) A 1% increase in u causes 1% changes in x
 - (C) A 2% increase in u causes 3% changes in x
 - (D) A 2% increase in u causes 1% changes in x
 - (E) Answer not known

179.	In the degree of freedom analysis $N_F = N_V - N_E$ is said to be zero in mathematical model it means that the problem is ———————————————————————————————————							
	(A) (C) (E)	v	` /	Over determined Negatively determined				
180.	In case of convex optimization programming problem, there will be							
	(A)	No maxima	(B)	Saddle point				
	(C)	No minima	(D)	Delta point				
	(E)	Answer not known						
181.	Management of hazardous waste is listed under — of LDR program.							
	(A)	458 and 578	(B)	260 and 278				
	(C)	262 and 268	(D)	272 and 278				
	(E)	Answer not known						
182.	Flotation technique is used in paper industry to recover							
	(A)	Fine fibres						
	(B)	Enzymes						
	(C)	Paper pulp						
	(D)	Solid impurities						
	(E)	Answer not known						

- 183. Maximum allowable noise exposure limits for a man working for 8 hours a day in a noisy chemical plant is about 20 Decibels (A) (B) 60 Decibels 90 Decibels (C) 120 Decibels (D) Answer not known (E) 184. Select the correct option that contains the occupational diseases that are listed in Factories Act, 1948 Anthrax and Silicosis (A)

 - Diarrhea and Lead poisoning (B)
 - (C) Cholera and Byssinosis
 - Diarrhea and Pneumoconiosis (D)
 - Answer not known (E)
- 185. The particles of ————— are added to water containing nuclear waste, which makes the radio active materials into lumps within minutes.
 - (A) Alum
 - (B) Argon
 - (C) Neon
 - (D) Graphene
 - (E) Answer not known

186.	A ———	is a	form	of	safe	system	of	work	operated	where
	there may be a l	high d	degree	of	fores	eeable r	isk			

- (A) HAZOP
- (B) Fault Tree Analysis
- (C) Safety Culture
- (D) Permit to work system
- (E) Answer not known
- 187. Which safety signs are indicated by a green square or rectangle with symbols and lettering in white?
 - (A) Prohibition signs
 - (B) Warning signs
 - (C) Mandatory signs
 - (D) Safe condition signs
 - (E) Answer not known
- 188. Extinguishing of fire through the process of isolating the fix from the supply of oxygen by blanketing it water foam, sand etc is known as
 - (A) Smothering
 - (B) Cooling
 - (C) Interruption of chain reaction
 - (D) Starring
 - (E) Answer not known

- 189. A petroleum storage tank containing 500 litres of petrol catches fire. Identify the type of fire that takes place in the above mentioned scenario.
 - (A) Class A fire
 - (B) Class B fire
 - (C) Class D fire
 - (D) Class C fire
 - (E) Answer not known
- 190. The number of disabling injuries per million man hours of operation is called as
 - (A) Threshold value
 - (B) Frequency rate
 - (C) Ceiling level
 - (D) Time-Weight average
 - (E) Answer not known
- 191. Name the fire detector that can be used to detect the fire at the incipient stage itself.
 - (A) Infrared flame detector
 - (B) Ultraviolet flame detector
 - (C) Ionization detector
 - (D) Optical smoke detector
 - (E) Answer not known

192.	The	HAZOP	stand	for

- (A) Hazard and operability studies
- (B) Hygiene and offshore studies
- (C) Health and operation studies
- (D) Hazardous and offshore studies
- (E) Answer not known

193. Find out the treatment system to remove phosphorus from waste water.

- (A) Ozonation
- (B) Ion exchange
- (C) Metal salt addition
- (D) Electro dialysis
- (E) Answer not known

194. Winkler method is used to find

- (A) DO
- (B) BOD
- (C) COD
- (D) TOC
- (E) Answer not known

195. General term used for particles suspended in air is

- (A) Aerosol
- (B) Plume
- (C) Smog
- (D) Fume
- (E) Answer not known

196.		oose the correct option which indicates point sources of water ution:
	(1)	Acid Rain
	(2)	Agricultural run-off
	(3)	Municipal discharge pipes
	(4)	Industrial discharge pipes
	(A)	1 and 2
	` ′	2 and 3
	(C)	3 and 4
	(D)	1 and 4
	(E)	Answer not known
197.		a waste water both inorganic and organic matters are measured test. Biological Oxygen Demand (BOD) Chemical Oxygen Demand (COD) Turbidity meter Colorimeter Answer not known
198.	Air	pollution from automobiles can be controlled by fitting
	(A)	Catalytic converter
	(B)	Cyclone separator
	(C)	Fabric filter
	(D)	Electrostatic precipitator
	(E)	Answer not known

- 199. The chemical responsible for bhopal gas tragedy is
 - (A) Ammonia
 - (B) Methyl Isocyanate
 - (C) Chlorine
 - (D) Sulphur di oxide
 - (E) Answer not known
- 200. An example of Non-Persistent pollutant is
 - (A) Domestic sewage
 - (B) Pesticides
 - (C) Plastics
 - (D) Nuclear waste
 - (E) Answer not known